Re: Preguntas y Respuestas/hist.de la ciencia y tecnologia en Mx..siglo XX
INSTITUTO MEXICANO DEL PETROLEO
Fórmula 4. Tetraetilo de plomo. Aunque mejora el desempeño de las gasolinas, la presencia de plomo en este compuesto es un agente grave de contaminación. La mayoría de los metales pesados son tóxicos para los humanos.
Después de un primer intento fallido, los ingenieros químicos mexicanos lograron, con la tenacidad que inspiran los bloqueos, echar a andar una planta de tetraetilo que se instaló en el mismo lugar donde 27 años más tarde (1966) se crearía el IMP.
México no sólo es el quinto productor de petróleo crudo en el mundo, sino también el decimosegundo de productos petroquímicos. Hacia 1982 se encontraba entre los primeros cinco por el número de plantas en desarrollo, situación que empeoró debido a la escasa inversión de los años críticos posteriores.
En el Instituto se han diseñado cerca de 100 plantas petroquímicas y de refinación de petróleo. Sin embargo, no todo ha sido diseño. El IMP cuenta con más de 150 patentes con registro internacional, entre las que destacan las de procesos de hidrodesulfuración (eliminación del contaminante azufre de las gasolinas y el diesel) y de desmetalización selectiva de residuos pesados (conocido como proceso DEMEX), con plantas que trabajan en el país y el extranjero.
El aporte del Instituto al desarrollo nacional ha sido muy importante. En fecha reciente concluyó, por ejemplo, el estudio global de la calidad del aire en la zona metropolitana de la ciudad de México, que permite simular y valorar el efecto que sobre la contaminación por azufre, hidrocarburos, óxidos de nitrógeno y ozono, tendría la aplicación de diversas medidas de control tales como algunos cambios en la composición de gasolinas y diésel, el efecto de las fuentes móviles y fijas, la eliminación de la refinería de Azcapotzalco, etcétera.
EL HIERRO ESPONJA
Tal vez la tecnología mexicana más conocida en el extranjero sea la que desarrolló la compañía Hojalata y Lámina (HYLSA) de Monterrey, respecto al llamado hierro esponja. Sobre dicha tecnología se informa en la Encyclopedia of Chemical Technology.
En 1957, un efecto de la guerra de Corea fue la elevación de los precios de la chatarra. HYLSA, que producía aeroplanos a partir de chatarra, hubo de iniciar un programa de investigación cuyo resultado fue el proceso de reducción directa del mineral de hierro. Una tecnología tercermundista de primera línea.
Treinta años más tarde, cuando la producción mundial de hierro alcanza los mil millones de toneladas, la tecnología de HYLSA sigue siendo líder en el campo de obtención de hierro por reducción directa.
Figura 7. Aspecto del hierro esponja, mineral de hierro después de ser sometido al tratamiento de reducción directa (cortesía del doctor Gabriel Gojon, UANL.)
REDUCCIÓN Y OXIDACIÓN, PILARES DE LA QUÍMICA
El término oxidación se aplicó originalmente a la ganancia de oxígeno en un cambio químico. La formación de herrumbre a partir de hierro es una oxidación, lo mismo que cualquier combustión. Al proceso inverso, la pérdida de oxígeno, se lo llamó reducción.
Posteriormente, ambos términos fueron ampliados para incluir la ganancia o pérdida de hidrógeno o electrones (véase el cuadro 4).
CUADRO 4. Significado de oxidación y reducción
Se oxida la sustancia o el átomo que
Se reduce la sustancia o el átomo que
Gana oxígeno o pierde hidrógeno o pierde electrones
Pierde oxígeno o gana hidrógeno o gana electrones
En el proceso del hierro esponja, la proporción de oxígeno que se encuentra combinada químicamente con el hierro en el mineral se va reduciendo paulatinamente gracias a la acción de una mezcla de hidrógeno (H2) y monóxido de carbono (CO), que se alimenta a 800° C. Ambas sustancias toman átomos de oxígeno del mineral (se oxidan) para formar H2O y CO2. De esta manera, el óxido de hierro del mineral, Fe2 O3 se convierte en Fe3 O4, luego en FeO y finalmente en el elemento Fe. Es decir, el mineral de hierro se reduce (pierde oxígeno). El resultado es un hierro poroso, esencialmente con la misma forma y tamaño que la partícula del mineral, que es una magnífica carga para la elaboración de acero en un horno eléctrico, pues está libre de impurezas metálicas, es fácil de manejar y transportar y posee una composición química uniforme y precisa.
LA REVOLUCIÓN VERDE
En México se inició y desarrolló el proceso conocido como revolución verde, el cual permitió a Norman Borlaug ganar el Premio Nobel de la Paz de 1970, por sus descubrimientos en el campo de la agricultura.
Este proyecto, con influencia política pero esencialmente biológico y bioquímico, revolucionó la producción agrícola e influyó en la consolidación de importantes grupos mexicanos de investigación, como el del Centro Internacional para el Mejoramiento del Maíz y del Trigo (CIMMYT), el del Instituto Nacional de Investigaciones Agrícolas (INIA) y el del Colegio de Posgraduados de Chapingo.
En veinte años, la productividad de maíz por hectárea pasó de 975 a 1 770 kilogramos y la de trigo, de 1 417 a 3 480 kilogramos, lo cual constituyó un aporte que alivió en parte los problemas de escasez de alimentos y la desnutrición. Debemos tener presente que se hace necesario un importante apoyo financiero y tecnológico para lograr la generalización de este sistema en todo el país, dado que los problemas del campo siguen siendo muy graves.
Además de las citadas, son varias las instituciones nacionales que realizan investigación de carácter biológico y bioquímico, orientada al reino vegetal: la Facultad de Química de la UNAM, el Centro de Investigación y Estudios Avanzados del IPN de Irapuato y el Centro de Investigación Científica de Yucatán. Parte de la investigación se orienta hacia el mejoramiento de las poblaciones vegetales para obtener mayor resistencia genética a las enfermedades y a las plagas, así como hacia el desarrollo de una mayor tolerancia a la sequía y el almacenamiento. Todo esto es de gran importancia en un país en el que el maíz y el frijol son la base de la alimentación, y donde 80% de la superficie cultivada depende de la lluvia como única fuente de humedad.
UN PROBLEMA GRAVE Y UNA ENORME POTENCIALIDAD
Después de presentar este panorama de la química mexicana, vale la pena resaltar las razones por las que el desarrollo de la ciencia central ha sido tan moderado.
Desde luego, la química comparte con otras ciencias una problemática común de financiamiento y ausencia de tradición, heredadas de nuestra condición de país tercermundista. De aquí se deriva la tragedia de la ciencia mexicana. Sin embargo, esta ciencia presenta una característica muy peculiar, ya que de ella ha derivado una de las industrias más dinámicas de la economía: la industria química. Esto representa una gran ventaja y potencialidad, pero también un grave problema.
Las aplicaciones de la química empezaron a darse aun antes de que ésta se estableciera como ciencia. Por ejemplo, la edad de hierro sólo pudo ocurrir mediante el aprendizaje de la transformación de los minerales en metales, pero ello tuvo lugar milenios antes del nacimiento de Lavoisier y Dalton. Así, el conocimiento empírico se adelantó grandemente al conocimiento científico, el cual es muy reciente. Con ello, mucha gente se contentó con el saber hacer sin importar mucho el saber por qué. Fueron pocos los países donde se utilizó la química para comprender todos esos hechos y técnicas producto de la experiencia acumulada. Muy pronto esos mismos países pudieron acoplar la investigación fundamental con la producción de nuevos bienes. Nosotros importamos la manera de hacerlos, pero no cultivamos ni trasladamos la forma de conocer cómo desarrollar otros.
Así, cuando en México se presentó el fenómeno de la industrialización, la química participó como una actividad técnica (más que científica) modelada por nuestro carácter dependiente. De esta manera, el ejercicio creativo de la química y la ingeniería química se restringió a los espacios académicos universitarios, en franca desconexión con la producción, ya que ésta no necesitaba de creatividad, pues surgió como una actividad refleja.
Este es el gran reto de la química en México: lograr que se realicen nuevos descubrimientos que luego transiten, en el tiempo necesario, de la mesa de laboratorio a la instalación industrial o al campo y de allí se conviertan en beneficio para la población. Es urgente que se deje de concebir a la química como una ciencia "para hacer cosas" y que se piense en ella "para conocer más cosas", que luego nos beneficien más.
Los pocos ejemplos citados deben repetirse con más frecuencia. Pero ello sólo se logrará cuando se adquiera total conciencia de la importancia capital que tiene para un país el desarrollo de la ciencia y de sus aplicaciones originales. Otro será el estado de este país cuando tengamos menos cosas que aprender y más que enseñar. Por ahora, seguimos aprendiendo...
BIBLIOGRAFÍA RECOMENDADA
Bargalló, M., La química inorgánica y el beneficio de los metales en el México prehispánico y colonial, UNAM, México, 1966.
De Gortari, E., La ciencia en la historia de México, Fondo de Cultura Económica, México, 1963.
García Fernández, H., Historia de una Facultad, UNAM, México, 1985.
Garritz, A. y J. A. Chamizo, Química, Addison-Wesley Iberoamericana, Wilmington, 1994.
Hernández B., E. R., Desarrollo de la química inorgánica en México y la contribución de la Facultad de Química en esa área, trabajo monográfico, Facultad de Química, UNAM, 1986.
Siguiura. Y, "La ciencia y la tecnología en el México antiguo", Ciencia y Desarrollo, vol. 8, núm. 43, marzo-abril de 1982, pp. 113-141.
Syntex, Una corporación y una molécula, México, 1967.
Trabulse, E., Historia de la ciencia en México, Fondo de Cultura Económica, México, 1983.
Waissbluth, M. et al, "El desarrollo de la ciencia y la tecnología en México", Ciencia y Desarrollo, vol. 8, núm. 45, julio-agosto de 1982, pp. 27-83.
INSTITUTO MEXICANO DEL PETROLEO
Fórmula 4. Tetraetilo de plomo. Aunque mejora el desempeño de las gasolinas, la presencia de plomo en este compuesto es un agente grave de contaminación. La mayoría de los metales pesados son tóxicos para los humanos.
Después de un primer intento fallido, los ingenieros químicos mexicanos lograron, con la tenacidad que inspiran los bloqueos, echar a andar una planta de tetraetilo que se instaló en el mismo lugar donde 27 años más tarde (1966) se crearía el IMP.
México no sólo es el quinto productor de petróleo crudo en el mundo, sino también el decimosegundo de productos petroquímicos. Hacia 1982 se encontraba entre los primeros cinco por el número de plantas en desarrollo, situación que empeoró debido a la escasa inversión de los años críticos posteriores.
En el Instituto se han diseñado cerca de 100 plantas petroquímicas y de refinación de petróleo. Sin embargo, no todo ha sido diseño. El IMP cuenta con más de 150 patentes con registro internacional, entre las que destacan las de procesos de hidrodesulfuración (eliminación del contaminante azufre de las gasolinas y el diesel) y de desmetalización selectiva de residuos pesados (conocido como proceso DEMEX), con plantas que trabajan en el país y el extranjero.
El aporte del Instituto al desarrollo nacional ha sido muy importante. En fecha reciente concluyó, por ejemplo, el estudio global de la calidad del aire en la zona metropolitana de la ciudad de México, que permite simular y valorar el efecto que sobre la contaminación por azufre, hidrocarburos, óxidos de nitrógeno y ozono, tendría la aplicación de diversas medidas de control tales como algunos cambios en la composición de gasolinas y diésel, el efecto de las fuentes móviles y fijas, la eliminación de la refinería de Azcapotzalco, etcétera.
EL HIERRO ESPONJA
Tal vez la tecnología mexicana más conocida en el extranjero sea la que desarrolló la compañía Hojalata y Lámina (HYLSA) de Monterrey, respecto al llamado hierro esponja. Sobre dicha tecnología se informa en la Encyclopedia of Chemical Technology.
En 1957, un efecto de la guerra de Corea fue la elevación de los precios de la chatarra. HYLSA, que producía aeroplanos a partir de chatarra, hubo de iniciar un programa de investigación cuyo resultado fue el proceso de reducción directa del mineral de hierro. Una tecnología tercermundista de primera línea.
Treinta años más tarde, cuando la producción mundial de hierro alcanza los mil millones de toneladas, la tecnología de HYLSA sigue siendo líder en el campo de obtención de hierro por reducción directa.
Figura 7. Aspecto del hierro esponja, mineral de hierro después de ser sometido al tratamiento de reducción directa (cortesía del doctor Gabriel Gojon, UANL.)
REDUCCIÓN Y OXIDACIÓN, PILARES DE LA QUÍMICA
El término oxidación se aplicó originalmente a la ganancia de oxígeno en un cambio químico. La formación de herrumbre a partir de hierro es una oxidación, lo mismo que cualquier combustión. Al proceso inverso, la pérdida de oxígeno, se lo llamó reducción.
Posteriormente, ambos términos fueron ampliados para incluir la ganancia o pérdida de hidrógeno o electrones (véase el cuadro 4).
CUADRO 4. Significado de oxidación y reducción
Se oxida la sustancia o el átomo que
Se reduce la sustancia o el átomo que
Gana oxígeno o pierde hidrógeno o pierde electrones
Pierde oxígeno o gana hidrógeno o gana electrones
En el proceso del hierro esponja, la proporción de oxígeno que se encuentra combinada químicamente con el hierro en el mineral se va reduciendo paulatinamente gracias a la acción de una mezcla de hidrógeno (H2) y monóxido de carbono (CO), que se alimenta a 800° C. Ambas sustancias toman átomos de oxígeno del mineral (se oxidan) para formar H2O y CO2. De esta manera, el óxido de hierro del mineral, Fe2 O3 se convierte en Fe3 O4, luego en FeO y finalmente en el elemento Fe. Es decir, el mineral de hierro se reduce (pierde oxígeno). El resultado es un hierro poroso, esencialmente con la misma forma y tamaño que la partícula del mineral, que es una magnífica carga para la elaboración de acero en un horno eléctrico, pues está libre de impurezas metálicas, es fácil de manejar y transportar y posee una composición química uniforme y precisa.
LA REVOLUCIÓN VERDE
En México se inició y desarrolló el proceso conocido como revolución verde, el cual permitió a Norman Borlaug ganar el Premio Nobel de la Paz de 1970, por sus descubrimientos en el campo de la agricultura.
Este proyecto, con influencia política pero esencialmente biológico y bioquímico, revolucionó la producción agrícola e influyó en la consolidación de importantes grupos mexicanos de investigación, como el del Centro Internacional para el Mejoramiento del Maíz y del Trigo (CIMMYT), el del Instituto Nacional de Investigaciones Agrícolas (INIA) y el del Colegio de Posgraduados de Chapingo.
En veinte años, la productividad de maíz por hectárea pasó de 975 a 1 770 kilogramos y la de trigo, de 1 417 a 3 480 kilogramos, lo cual constituyó un aporte que alivió en parte los problemas de escasez de alimentos y la desnutrición. Debemos tener presente que se hace necesario un importante apoyo financiero y tecnológico para lograr la generalización de este sistema en todo el país, dado que los problemas del campo siguen siendo muy graves.
Además de las citadas, son varias las instituciones nacionales que realizan investigación de carácter biológico y bioquímico, orientada al reino vegetal: la Facultad de Química de la UNAM, el Centro de Investigación y Estudios Avanzados del IPN de Irapuato y el Centro de Investigación Científica de Yucatán. Parte de la investigación se orienta hacia el mejoramiento de las poblaciones vegetales para obtener mayor resistencia genética a las enfermedades y a las plagas, así como hacia el desarrollo de una mayor tolerancia a la sequía y el almacenamiento. Todo esto es de gran importancia en un país en el que el maíz y el frijol son la base de la alimentación, y donde 80% de la superficie cultivada depende de la lluvia como única fuente de humedad.
UN PROBLEMA GRAVE Y UNA ENORME POTENCIALIDAD
Después de presentar este panorama de la química mexicana, vale la pena resaltar las razones por las que el desarrollo de la ciencia central ha sido tan moderado.
Desde luego, la química comparte con otras ciencias una problemática común de financiamiento y ausencia de tradición, heredadas de nuestra condición de país tercermundista. De aquí se deriva la tragedia de la ciencia mexicana. Sin embargo, esta ciencia presenta una característica muy peculiar, ya que de ella ha derivado una de las industrias más dinámicas de la economía: la industria química. Esto representa una gran ventaja y potencialidad, pero también un grave problema.
Las aplicaciones de la química empezaron a darse aun antes de que ésta se estableciera como ciencia. Por ejemplo, la edad de hierro sólo pudo ocurrir mediante el aprendizaje de la transformación de los minerales en metales, pero ello tuvo lugar milenios antes del nacimiento de Lavoisier y Dalton. Así, el conocimiento empírico se adelantó grandemente al conocimiento científico, el cual es muy reciente. Con ello, mucha gente se contentó con el saber hacer sin importar mucho el saber por qué. Fueron pocos los países donde se utilizó la química para comprender todos esos hechos y técnicas producto de la experiencia acumulada. Muy pronto esos mismos países pudieron acoplar la investigación fundamental con la producción de nuevos bienes. Nosotros importamos la manera de hacerlos, pero no cultivamos ni trasladamos la forma de conocer cómo desarrollar otros.
Así, cuando en México se presentó el fenómeno de la industrialización, la química participó como una actividad técnica (más que científica) modelada por nuestro carácter dependiente. De esta manera, el ejercicio creativo de la química y la ingeniería química se restringió a los espacios académicos universitarios, en franca desconexión con la producción, ya que ésta no necesitaba de creatividad, pues surgió como una actividad refleja.
Este es el gran reto de la química en México: lograr que se realicen nuevos descubrimientos que luego transiten, en el tiempo necesario, de la mesa de laboratorio a la instalación industrial o al campo y de allí se conviertan en beneficio para la población. Es urgente que se deje de concebir a la química como una ciencia "para hacer cosas" y que se piense en ella "para conocer más cosas", que luego nos beneficien más.
Los pocos ejemplos citados deben repetirse con más frecuencia. Pero ello sólo se logrará cuando se adquiera total conciencia de la importancia capital que tiene para un país el desarrollo de la ciencia y de sus aplicaciones originales. Otro será el estado de este país cuando tengamos menos cosas que aprender y más que enseñar. Por ahora, seguimos aprendiendo...
BIBLIOGRAFÍA RECOMENDADA
Bargalló, M., La química inorgánica y el beneficio de los metales en el México prehispánico y colonial, UNAM, México, 1966.
De Gortari, E., La ciencia en la historia de México, Fondo de Cultura Económica, México, 1963.
García Fernández, H., Historia de una Facultad, UNAM, México, 1985.
Garritz, A. y J. A. Chamizo, Química, Addison-Wesley Iberoamericana, Wilmington, 1994.
Hernández B., E. R., Desarrollo de la química inorgánica en México y la contribución de la Facultad de Química en esa área, trabajo monográfico, Facultad de Química, UNAM, 1986.
Siguiura. Y, "La ciencia y la tecnología en el México antiguo", Ciencia y Desarrollo, vol. 8, núm. 43, marzo-abril de 1982, pp. 113-141.
Syntex, Una corporación y una molécula, México, 1967.
Trabulse, E., Historia de la ciencia en México, Fondo de Cultura Económica, México, 1983.
Waissbluth, M. et al, "El desarrollo de la ciencia y la tecnología en México", Ciencia y Desarrollo, vol. 8, núm. 45, julio-agosto de 1982, pp. 27-83.
Comment